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ABSTRACT 
 

This paper discusses several stability results on the stability of aeromaneuvering, flexible spacecraft.  The fields of 
spacecraft aeromaneuvering, flexible spacecraft dynamics, and rarefied gas flows are connected to understand the dynamics 
of flexible spacecraft as they travel through the upper atmosphere.  Insightful analytic stability solutions were developed to 
help a spacecraft builder design a stable spacecraft.  Boom flexibility plays an important role in dynamic stability, but the 
effect of flexibility will depend on the boom's orientation and positioning.  The solutions can also be used to produce design 
maps that are useful when tracking stability as the parameters change over the lifetime of the mission.  The work has direct 
application to the boomed NASA GEC spacecraft.  The work shows that its booms should be placed as far back on the 
spacecraft as possible for the greatest stability.  Making the booms more rigid will also help the stability in the yaw plane, but 
diminishing returns are seen after a certain level of stiffness.   
 
INTRODUCTION 
 

Most satellites and spacecraft fly in high enough orbits so that they will not experience significant aerodynamic drag 
in an orbital time period.  However, there are some missions where a spacecraft may wish to enter the upper regions of the 
Earth’s atmosphere for a short period of time.  These missions may be operational or scientific in nature, such as to conduct 
an aeroassist for an orbital plane change or to take magnetosphere readings in the upper atmosphere.   
 In some cases, these spacecraft may have large flexible booms.  Booms may be used for solar panels, antenna, or to 
hold scientific instruments away from the spacecraft's body.  An important engineering and design question is determining 
how large, flexible booms affect the overall stability of the spacecraft during the atmospheric portion of flight.   

Much of the literature on aeromaneuvers focuses on spacecraft with space-shuttle-like configurations where the 
spacecraft is treated as a point-mass model.1  Because of the 
rigid-body nature of these spacecraft, internal flexibility modes 
are usually not of concern.  Spacecraft with long, flexible 
booms, however, present an extra layer of dynamics.   Even in 
free-space, instabilities may arise that would not normally be 
predicted by a point-mass model.  Although the literature quite 
extensively covers the dynamics and control of flexible 
spacecraft in free-space,2,3 there is little analysis when those 
types of spacecraft undergo the aerodynamic effects of an 
atmospheric passage.  A connection needs to be made between 
flexible spacecraft dynamics and aeromaneuvering to 
understand how a spacecraft behaves under these conditions.   

Such a connection is important for spacecraft 
missions currently under development.  The Geospace 
Electrodynamics Connections Mission (GEC)4 spacecraft, 
currently being designed by the National Aeronautics and 
Space Administration (NASA) at the Goddard Space Flight 
Center, is a key example of a flexible spacecraft undergoing a 
shallow atmospheric pass.  The spacecraft has six long booms 
that hold instruments to measure the local electric and 
magnetic fields.  An illustration of the spacecraft is shown in 
Fig. 1.  One of the key missions of the spacecraft is to dip into 
the upper atmosphere (approximately 130 km above the 
Earth’s surface) to take field readings at those altitudes.  In this 
rarefied atmospheric region there will be significant 

 

Fig. 1:  GEC Spacecraft4 
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aerodynamic loading on the booms and spacecraft.  The key concern is that the booms may cause instabilities that lead to the 
loss of the spacecraft. 

Understanding the dynamics and preventing instabilities are important research goals that need to be accomplished.  
The research needs to answer the following questions: 

- How do the placement of the booms and the location of the aerodynamic center of the spacecraft affect the stability 
results? 
- How does boom flexibility affect stability? 
- What are the stable spacecraft configurations? 

 These are important questions because there have been many previous spacecraft that have experienced costly 
stability problems5 even without aerodynamic effects. Adding aerodynamic effects to the flexible spacecraft will only 
augment the likelihood of stability problems.  Future designers of aeromaneuvering, flexible spacecraft must account for 
these effects. 
 
AERODYNAMIC MODEL 
 
 The most important element in investigating how a flexible spacecraft performs during aeromaneuvering is how the 
flexible spacecraft surfaces interact with the atmosphere.  The main driver that determines the aerodynamics of this 
interaction is the atmospheric or gas-surface interaction model. 
 There are two main types of aerodynamic models available: a continuum model or a discrete particle or molecular 
model.  The Knudson number will determine which type of aerodynamic model to use.  The Knudson number is the ratio of 
the molecular mean free path to the spacecraft length: 

*L
Kn λ=               (1) 

 For small Knudson numbers, the molecules will have significant interaction with each other before and after hitting 
the spacecraft surface.  For large Knudson numbers, essentially the molecules do not interact with each other before or after 
hitting the spacecraft surface, thus the molecules can be treated independently and only momentum transfer needs to be 
considered. 
 Generally, if the Knudson number is greater than 1, a rarefied aerodynamic model should be used.  If the Knudson 
number is much, much less than 1, a continuum aerodynamic model can be used6.  For Knudson numbers between 0.1 and 1, 
a transitional model might be required.   
 At very low atmospheric densities, the mean free path is large, so for most spacecraft making very shallow dips into 
the atmosphere, a rarefied gas-surface model can be used.  The lowest altitude this assumption is valid for depends on the 
mean free path.  For a spacecraft that is 3-5 meters long, a rarefied model will be valid for altitudes down to 120-125 km7.  
Since this work concentrates on spacecraft excursions above these altitudes, a rarefied aerodynamic model is appropriate. 
 
Rarefied Gas-Surface Interaction Model 
 
 For simplicity, a modified Maxwellian rarefied gas-surface model will be used to calculate the lift and drag forces 
on the spacecraft surfaces.  The Maxwell model8 states that molecules will either reflect diffusely from a surface with 
complete energy accommodation or will reflect specularly with no change in energy.   
 By considering a full range of momentum accommodation, ε (ε = 0: molecules "hit-and-stick" to the surface; ε  = 1: 
molecules reflect from the surface with the same momentum they arrived with), and fraction of specular to diffuse behavior, 
ξ (ξ = 0: complete diffuse behavior; ξ  = 1: complete specular behavior), the entire range of gas-surface interactions can be 
modeled for aerodynamic force determination. 
 A modified form of the Maxwellian model has been previously derived by Lewis9 and Bowman10, and they provide 
formulas for lift and drag.  By converting their equations into the standard notation of: 

Lo CSVL *2

2
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2
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where α is the angle between a spacecraft surface and the incoming flow, and oVc /  is the molecular thermal speed ratio. 
 The benefits of this model are that the equations are simple and concise, relying on only a few parameters to 
determine the lift and drag.  The more detailed Nocilla or Cercignani-Lampis model, or Direct Simulation Monte Carlo 
(DSMC) analysis could also be used, but since the net lift and drag are the only needed values and a detailed flow description 
is not required, this modified Maxwellian model is sufficient and simplest to use. 
 
Drag and Lift of the Spacecraft 
 
Spacecraft Body 
 
 Eqs. (2) - (9) for the lift and drag are only for a flat surface.  To find the overall lift and drag coefficients for a 
complex spacecraft surface, the same equations can be used, but the spacecraft surface needs to be approximated by a group 
of flat plates.  With this panel method, the lift and drag could be calculated over each surface of the body and the results 
averaged to provide the overall lift and drag coefficients.  Bowman11 provides some detail for such a method. 
 For some spacecraft shapes, the lift and drag equations can be integrated over a spacecraft surface instead of using a 
panel method.  If the integration is feasible, an analytic solution can be found that is more accurate and may be preferable to a 
panel method solution.  These solutions are generally only found for simple, smooth spacecraft shapes.  This technique has 
been used by Sentman12 for several simple spacecraft body shapes. 
 
Spacecraft Booms 
 
 Not only is it important to calculate the lift and drag of the spacecraft body, it is also necessary to calculate the lift 
and drag of the spacecraft's booms.  If the booms are flat in nature, similar to a flat wing, solar panel, or deployed out like a 
tape measurer, the lift and drag of the booms can be calculated from Eqs. (2) - (9) where α is the angle the booms make with 
the incoming flow.  The assumption is that only one side of a flat boom is seen by the flow. 
 If the spacecraft's flexible booms are of a complex shape a panel method or integration technique may need to be 
used to calculate the lift and drag.  Schultz13 has shown, however, that under expected rarefied flow conditions where the 
accommodation fraction and thermal speed ratio are small, and especially when the interaction is diffuse, a complex boom 
shape can be approximated by a flat plate.  Therefore, a flat plate boom model will be used in the following analysis.   
  
LINEAR BOOM MODEL 
  
 During the spacecraft's flight through the upper atmosphere, the spacecraft's booms will bend under the aerodynamic 
load.  This aeroelastic interaction can be complex with non-linear internal stresses and non-linear aerodynamic forces along 
the length of the boom.  However, if one linearizes this aeroelastic system, important physical quantities can be determined 
which capture the most important parts of the system. 
 The bending beam system can be 
linearly reduced to a rigid boom connected to 
the spacecraft body by a torsional spring.  This 
linear system is illustrated in Fig. 2.  The linear 
system will be able to capture the tip deflection 
amount and the first mode of vibration.   

The boom is set at an angle of attack 
of θo, but the oncoming flow will bend the 
boom an additional amount θ.  This θ is the 
deflection angle.  The resulting angle of the 
boom with respect to the flow is: 

        θθφ += o                  (10) 
So, assuming θ is small, the boom’s lift and 
drag coefficients can be written in linear form 
as: 

θαLLoL CCC +=    θαDDoD CCC +=                  (11), (12)  
where these coefficients are calculated (for flat booms) from Eqs. (2) - (9) at α = θo:  
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Fig. 2: Boom in a Flow 
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Note: this method will also work for any shape boom as long as a linear Lift and Drag profile can be determined as in Eqs. 
(11) and (12). 
  
EQUATIONS OF MOTION 
 

A two-dimensional, linear spacecraft model will be developed.  Such a model provides a reasonable estimate of the 
dynamic behavior of the spacecraft.  The spacecraft model will then be used as the basis for creating the equations of motion. 
The benefits and limitations of the model will be discussed throughout this section. 
 
Spacecraft Model 
 

The spacecraft model consists of several rigid bodies with one being the main spacecraft body (body B) and the 
others being any number of booms (bodies An) attached to body B at various locations (points On).  This common 
configuration is often called a "hub-arm" configuration.  Fig. 3 shows a model of the spacecraft.  For simplicity, only two 
booms are shown.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Spacecraft Model 
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Several frames of reference are shown with the model.  The 'b'-frame is the spacecraft body frame, the 's'-frame is 

the spacecraft's orbit frame, the 'w'-frame is the wind-frame, and the 'a'-frames are each spacecraft arm's frame.  Commonly, 
the xŝ -direction is called the along-track orbit direction and xŵ -direction is called the in-track orbit direction. 

 
 

Equation Development 
 
Separation of Spacecraft and Orbit Stability 
 

To take advantage of classic stability and control analysis techniques, linearized equations of motion will be 
developed.  The largest difficulty in this approach is to handle one of the major components of the aerodynamics, density, 
because it will vary exponentially with the orbit height of the spacecraft.  Any linearization of the density as a variation of 
height will cause large errors when predicting the flight path of the satellite.   

However, if one limits the discussion to a study of the dynamics of the spacecraft itself and not on the stability of 
maintaining specific orbit paths, then a solution where density is held as a constant can be used.  Later, when one knows that 
a particular spacecraft configuration meets the designer’s particular stability needs, it is possible to move to a non-linear or 
point-mass model such as one by London14 or Vinh15 to evaluate the flight path requirements.  It is likely that several of these 
iterations may be done during the entire design process. 

 
Flat-Earth Model 
 

To investigate the dynamic behavior of the spacecraft across the entire flight regime, “snapshots” at various altitudes 
(densities) can be taken.  Of greatest interest is the altitude where the aerodynamics will have the greatest effect.  This occurs 
at the spacecraft’s perigee where it is at the bottom of its atmospheric dip.  It is here where the dynamics are the most 
interesting, and it is here where all of the following analysis will take place.  At the perigee point, the spacecraft’s trajectory 
can be approximated as straight and level at a constant altitude.  At this point of level flight, a flat-Earth dynamic model can 
be used without loss of detail.16  Assuming a flat-Earth model in this manner, the gravity force is implicitly omitted in the 
equations of motion. 

 
2-D Model 
 

The spacecraft of interest in this work are not spin stabilized.  Because the spacecraft isn't spinning (and due to the 
symmetric nature of the space vehicles that will be examined), the motion won't be coupled between different planes.  
Therefore a 2-D model of the spacecraft is acceptable and the dynamics of the spacecraft can be examined for each plane 
independently. 

 
Structural Modeling of the Booms 
 
 The booms will be modeled as rigid bodies connected to the main body by a linear, torsional spring.  The torsional 
spring is assumed to be linear, so that the moment on the spring depends on the deflection angle and angular velocity through 
the spring constant k’ and damping constant b’: 
      θθ &bkM ′−′−=              (17) 
This will capture the first mode of vibration in the dynamics.   
 
Aerodynamic Force Modeling 
 

It will be assumed that the flight path of the spacecraft will be confined to an altitude of at least 125 km above the 
Earth’s surface and higher in order to minimize drag and large heating rates.  At these altitudes, a rarefied gas-surface 
interaction model will be needed as previously described.  The linearization of the boom's lift and drag terms in Eqs. (11) and 
(12) will be used. 
 It will also be assumed that the aerodynamic force will be the dominant force acting on the spacecraft.   
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Spacecraft Equation of Motion 
 

For simplicity, a spacecraft with only two booms will be derived.  Once the equations of motion are generated for a 
two-boom spacecraft, the form of the equations will be readily apparent for a spacecraft with any number of booms.   
 The equations of motion are in the standard form of: 
      fqKuCuM

vvv&v ++=             (18) 
where uv  and qv  are arrays of generalized velocities and generalized coordinates: 

[ ]Tuuuuuu 54321=v    [ ]Tqqqqqq 54321=v                 (19) - (20) 
Referring to Fig. 3, a convenient choice of generalized velocities and generalized coordinates are: 
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Note that the generalized coordinates and generalized velocities are dimensionless except in time. 
 Eq. (18) can be written in linear form as: 
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where G is the differential relationship between the generalized coordinates and generalized velocities. 
 The results are in the state-space form of: 
      

oxxAx vv&v +=              (24) 
 The state vector, xv , is comprised of the generalized velocities, u's, and generalized coordinates, q's. 

After the A-matrix is determined, one can examine its eigenvalues for dynamic stability analysis, investigate control 
issues, and conduct computer simulations.   
 
Symmetric Spacecraft 
 

Although the equations are valid and complete for linear analysis of any hub-arm spacecraft, important phenomenon 
can be investigated with a simple spacecraft configuration.  The symmetry will also aid in finding analytic stability solutions.  
In particular, a symmetric 2-boom and 4-boom spacecraft will be examined.   

Figs. 4a and 4b illustrate these spacecraft.  The booms have identical length, mass, surface, and spring properties and 
are oriented at an angle θo.  The connection point of the booms to the body is located on the body's centerline at a distance r 
from the center of gravity. 

 
 
 
 
 
 
 

 
 
 

Figs. 4 (a) and (b): Symmetric, 2-Boom and 4-Boom Spacecraft 
 
Non-Dimensionalization 
 
 The physical properties of the spacecraft will be non-dimensionalized.  Equations with non-dimensional parameters 
will make the results applicable to a wide range of spacecraft properties.   
 The basis of the non-dimensionalization is chosen to consist of the following properties: 
 L* length of the spacecraft body 
 mtot mass of the entire spacecraft 
 S* cross-sectional surface area of the spacecraft body 
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 Vo spacecraft's orbit velocity 
 ρ atmospheric density 
The non-dimensional properties are: 
 k boom spring constant (normalized by 1/2 ρ Vo

2 S* L*) 
 b damping constant (normalized by 1/2 ρ Vo S* L*2) 
 m mass of each boom (normalized by mtot) 
 r location of boom connection point, Brv  (normalized by L*)   
 xAC location of aerodynamic center (normalized by L*) 
 L length of each boom (normalized by L*) 
 S surface area of each boom (normalized by S*) 
 
Two-boom Symmetric Spacecraft 
 
 For the two-boom symmetric spacecraft it can be shown13 that Eq. (24) is in the form: 
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 The details of this derivation can be found from Ref. 13.  Each of the a-coefficients in the A-matrix are long and 
complex expressions of the non-dimensional properties.  A mathematical symbolic solver is required to find the exact 
expression for each a and x coefficient.  For numerical solutions, though, the coefficients are simple to calculate. 
 
Four-boom Symmetric Spacecraft 
 
 Similarly13, the four-boom symmetric spacecraft Eq. (24) is in the form: 
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  (26)  

 
 Note that the a- and x-coefficients in this A-matrix are not necessarily the same as those for the two-boom case. 
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Spacecraft Body 
 
 The boom's aerodynamic coefficients of CDo, CLo, CDα, and CLα are not the only aerodynamic coefficients required in 
the equations of motion.  The spacecraft body's aerodynamic coefficients for drag, lift, and moment are also important.  
These coefficients can also be expressed linearly as: 

bDbDboDb CCC αα+=   bLbLboLb CCC αα+=   bMbMboMb CCC αα+=              (27) - (29) 
where αb is the angle of attack of the spacecraft. 
 Many of the techniques for finding the drag and lift coefficients for the body were discussed previously, but the 
body's moment slope coefficient CMbα is an important stability parameter that needs to be examined more closely. 
 For a symmetric body shape it is known that there will be no net lift produced at a zero angle of attack.  
Additionally, there will be no net moment produced.  Under these conditions, it can be shown13 that: 
     ( ) *

acLbDboMb xCCC αα +=                 (30) 
 Since the body drag coefficient and lift-slope curve at zero angle of attack is known or can be calculated, there is a 
direct relationship between the body's moment-slope coefficient and aerodynamic center.  The two can be used 
interchangeably. 
 From Anderson17 or Etkin18, a stable body in an aerodynamic flow has its aerodynamic center behind the center of 
gravity.  A stable body in this centroid-symmetric shape with no booms has a negative xac.  The term CDbo is always positive 
and CLbα is usually positive for most spacecraft shapes but smaller than CDbo, so their sum is positive.  Then, by Eq. (30), if 
CMbα is negative, the body is statically stable.  If CMbα is positive, the body is statically unstable.  
 Adding booms to the spacecraft will change the stability criteria.  Still, the body's moment slope coefficient, CMbα, 
will play a large role in overall spacecraft stability.  As will be seen in the following chapters, any particular boom 
configuration will impose a requirement on CMbα that must be met for the entire spacecraft to be stable. 
 
 
DYNAMIC STABIILTY SOLUTIONS 
 

All of the properties of the booms - mass, size, position, and location - will influence the dynamic stability of the 
spacecraft.  Boom properties will also impose conditions on the spacecraft's body that must be met for stability.  By finding 
analytic stability equations, a spacecraft designer will have a better feel for how to meet these stability conditions. 

Given a main body without extra stabilizing characteristics, it would be expected that a rearward-positioned, 
rearward-facing boom configuration would be stable and a forward-positioned, forward-facing boom configuration would be 
unstable.  It is the same expectation that shooting an arrow with its tail feathers in the back produces nice, stable flight, but 
shooting it with the feathers in the front will cause erratic, unstable behavior.  To see if this is true, an eigenvalue analysis can 
be conducted for various boom configurations.  One can determine stability by calculating the eigenvalues of the A-matrix in 
Eq. (25) or (26).  If all of the eigenvalues are negative, then the system is stable.  If there is one or more positive eigenvalues 
in the group, then the system is unstable.19  The goal is to derive an analytic solution that will predict the existence of positive 
eigenvalues and thus the stability of a spacecraft design.   

 
Stability Solutions 
 

Finding the eigenvalues of a large matrix can be easily accomplished numerically with standard software packages.  
By generating the value of the determinant of the A-matrix (where, in this equation, I is the identity matrix): 

     ( ) 0det =− AIλ                (31) 
a 10th-order polynomial is produced, and solving for λ provides the eigenvalues.   

The polynomial also can be reduced to 6th order if the translational eigenvalues are removed.  Because there are no 
horizontal or vertical constraints on the spacecraft, there is no preferred horizontal or vertical position.  Therefore, the A-
matrix will always have at least two eigenvalues of zero corresponding to the rigid body position modes of the spacecraft.  
There are also two eigenvalues corresponding to the velocity of the spacecraft.  Since the maintenance of stable orbits is not 
being considered in this analysis, the translational eigenvalues will be ignored when determining the existence of the non-
negative eigenvalues for the rotational and vibrational instabilities. 

Determining the eigenvalues analytically, however, is both computationally intensive and difficult.  The process can 
be greatly simplified if one only considers whether the eigenvalues are positive or negative, not their exact values.  Routh's 



9 

stability criteria20 can be used for such cases.  Although features like settling time or peak amplitude won't be determined, at 
least the designer can see the dividing line between the stable and unstable spacecraft configurations.   
 By using Routh's stability criteria on this 6th order polynomial, the exact solution of the 6th-order polynomial can be 
avoided completely.  Instead, several smaller inequalities are generated that need to be satisfied.  Out of the 6 inequalities that 
need to be satisfied, 5 are consistently satisfied with realistic spacecraft parameters.  However, one of these inequalities is 
satisfied with only a certain set of spacecraft parameters.  It is this inequality that determines the stability and provides an 
analytic solution to the stability problem.  It can be shown13 that if the following inequality is satisfied by the following A-
matrix coefficients for the two-boom case the spacecraft is stable:  
(2-boom case)    ( )( ) 03958484938 >+− aaaaa             (32) 
 Finding the eigenvalues for the four-boom solution requires solving a 14th order polynomial.  The same analysis, 
however, can be done as in the two-boom case, and a similar inequality is derived for the four-boom case:   
(4-boom case)    ( )( ) 0394869385747694837 <−+− aaaaaaaaa            (33) 
 The coefficients in this equation are those for the four-boom A-matrix.  In both cases, these a-coefficients are 
lengthy expressions determined from carrying out the matrix multiplication in Eq. (23). 
 
6.1.2 Stability Solutions 
 
 Substituting in the appropriate expressions into the inequality equations will produce rather lengthy expressions; 
however, it can be simplified if a couple of assumptions are made.  The assumptions are that the mass of the booms is small, 
and the effective aerodynamic surface area of the booms is reasonably large, i.e.: 

1<<m   1>>
DbomC

S            (34) 

Under these assumptions, the result of Eq. (32) can be expanded and rearranged to: 

(2-boom case)  
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 Similarly, the stability expression can be derived for the four-boom spacecraft configuration under the same 
assumptions: 

(4-boom case)  
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 The derivation of both these equations can be found in Reference [13].  The equations show that there is a direct link 
between the boom parameters - mass, size, flexibility, orientation, and positioning - and the body parameter CMbα.  The boom 
parameters impose a condition on the aerodynamic center of the spacecraft body, via CMbα from Eq. (30), for the entire 
spacecraft to be stable.  Or, given a set aerodynamic center, the equations can be rearranged to determine what boom 
parameters are necessary to ensure the entire spacecraft is stable.   
 Many of these types of trades can be done to understand stability.  The following section will discuss several of 
them. 
 
 
RESULTS 
 
 Unless specified otherwise, the spacecraft and atmospheric parameters in Table 1 will be used to help discuss the 
stability results.  These parameters are representative of the planned GEC spacecraft design that will be discussed next.  
Under these parameters, all of the assumptions discussed in the development of the analytic dynamic stability equations will 
be met.              
 The first study will look at how CMbα varies with boom location and orientation for stability.  To simplify the study, 
the spring constant, k, will be set to a very large value (infinity) to simulate a rigid vehicle.  This will show how the boom 
orientation and location normally play a role in stability.  Later, k will be shown for various values to show what role boom 
flexibility plays in stability. 
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Stability of a Two-Boom Spacecraft 
 
 With k fixed at a large value for rigidity, Fig. 5a shows the stability for various values of CMbα, boom location, and 
boom orientation.  Any value of CMbα above a designated line in Fig. 5a produces an unstable configuration, while any value 
of CMbα below a designated line produces a stable spacecraft configuration.  Basically, with a given boom orientation and 
location, the spacecraft body will need to be designed to have its CMbα lie below the appropriate line in order for the entire 
spacecraft to be stable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 5 (a) and (b) : Stability Line for Different Boom Locations, 2-Booms and 4-Booms, Rigid 
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Table 1   Nominal Spacecraft Parameters 
__________________________________   
                          

Variable               Value 
__________________________________ 
 

L*     5.0 m 
L     2.0 
S*      1.0 m2 
S      0.2 
k     4.0 
r  −0.5 
CDbo     3.0 
CLbα      0.5 
ε    0.2 
ξ    0.1 

oVc /      0.1 
__________________________________   
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 As seen in the figure, a spacecraft with booms located near the front of the spacecraft (positive r values) tends to be 
less stable than one with booms located near the rear of the spacecraft (negative r values).  Additionally, spacecraft with 
forward-angled booms (0-90 deg) generally tend to be less stable than those with rearward-angled booms (90-180 deg).  This 
means that a spacecraft with forward-facing booms near the front of the spacecraft will require a much more stable spacecraft 
body design (larger negative CMbα) than a spacecraft with booms near the rear and/or rearward facing booms. 
 However, since this study concerns itself with flexible boom structures, it is important to look at how flexibility 
plays a role in stability.  With r fixed at 0 for simplicity, Fig. 6a shows how CMbα changes as k is varied to see what effect 
the boom stiffness plays in stability.  (Note: similar graphs are produced for all ranges of r, except the results are translated 
up and down similar to Fig. 5a.)            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 6 (a) and (b): Stability Line for Different Spring Constants, 2-Booms and 4-Booms, r = 0 
 
 
 In general, the stiffer the boom, the more stable a spacecraft will be.  Booms with a lower spring constant tend to 
destabilize the spacecraft.  This effect is most pronounced when the booms are forward-facing as compared to when they are 
rearward-facing.   
 It is interesting to note that at a few boom angles, the CMbα stability line is the same for all ranges of boom spring 
constants.  This occurs near 0, 90, and 180 deg (these are the locations at all ranges of r, too).  This is because the 
aerodynamic forces that produce a moment at the spacecraft body through the spring don't change (linearly) when the boom 
angle changes slightly from these positions.  Therefore, the CMbα contribution of the booms to the overall spacecraft stability 
is 0 and is independent of the boom stiffness.  The stability requirements change the most near 45 and 135 degrees because 
the aerodynamic moment has the greatest variance here as the boom angle changes.  This moment change modifies the 
effective spring constant of the boom the most at these points, and hence the stability is affected the most. 
 It is also seen that the forward-facing booms are more sensitive to changes in k than rearward-facing booms.  By 
examining the denominator of Eq. (35) or (36), one can see that the aerodynamic moment of the booms either adds or 
subtracts from spring constant.  For forward-facing booms, the spring constant is effectively lowered; for rearward-facing 
booms, the spring constant is effectively increased.  The aerodynamic moment is usually small compared to the spring 
moment, but if the spring moment is also small, the resulting difference between the two orientations is pronounced.  Hence, 
it is easier to destabilize a spacecraft with forward-facing booms when the booms are very flexible. 
 Finally, it might be assumed that there is a correlation between boom deflection amounts and stability.  Certainly, 
both depend on the value of k, but the correlation isn't direct.  The largest boom deflections occur near 90 deg boom 
orientations where a larger boom surface area is exposed, however that is not where the largest stability differences occur 
with changing k.  It is how the aerodynamic moments change the effective spring constant and not the boom deflections 
directly that determines stability. 
 
 

2-Boom, r  = 0

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 45 90 135 180
Boom Angle (deg)

C
M

b α

k  = 0.7

k  = 1.0

k  = 2.0
k  = 4.0
k  = 8.0

k  = 8.0

k  = 0.7
UNSTABLE REGION

STABLE REGION

4-Boom, r  = 0

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 30 60 90
Boom Angle (deg)

C
M

b α

k  = 0.7

k  = 1.0

k  = 2.0

k  = 4.0

k  = 8.0

UNSTABLE REGION

STABLE REGION



12 

Stability of a Four-Boom Spacecraft 
 
 Similar analysis can be done for a spacecraft with four booms.  With k fixed at a large value for rigidity, Fig. 5b 
shows the stability for various values of CMbα, boom locations, and boom orientations for a 4-boom spacecraft.  As with the 
2-boom spacecraft, a 4-boom spacecraft with booms located near the front of the spacecraft tends to be less stable than one 
with booms located near the rear of the spacecraft.   
 With the 4-boom spacecraft, however, there is no net forward-facing or rearward-facing orientation.  There are 
always two booms facing forward and two booms facing rearward.  Because of this, when r = 0 for a rigid spacecraft, there is 
no boom angle that is more or less stable than another in the 4-boom configuration.  If r < 0, then the spacecraft gets more 
stable as the booms get more perpendicular, but if r > 0, then the spacecraft gets less stable as the booms get more 
perpendicular.  Therefore, boom positioning plays more of an interesting role in stability than in the 2-boom case. 
 As with the 2-boom case, the 4-boom case can also be examined under flexible boom conditions.  With r fixed at 0 
for simplicity, Fig. 6b shows how CMbα changes as k is varied to see what effect the boom stiffness plays in stability.  Again, 
booms with a lower spring constant tend to destabilize the spacecraft.  The same discussion on the aerodynamic moment 
produced from the booms also applies.  The affect on the spring constant is greatest when the booms are near 45 degrees in 
the flow with minimal effect when they are at 0 or 90 deg. 
 
Stability of a Six-Boom Spacecraft in Orthogonal Configuration 
 
 The 2-boom and 4-boom cases can be combined to investigate the stability of NASA/Goddard's GEC spacecraft.  
This spacecraft has 6 flexible booms oriented in an orthogonal configuration.  An illustration of the spacecraft was shown in 
Fig. 1.  A potential concern is that the booms may cause instabilities. 
 The same stability equations can be used for the GEC configuration, but this time the boom positions are fixed in an 
orthogonal arrangement with 4 booms at 45˚ angles in the pitching plane and 2 booms at 90˚ angles in the yawing plane.  
Because θo is fixed for each boom, the design variables xAC and r will be examined instead. 
 Since the booms of the 6-boom satellite are in different and perpendicular planes, the same equations, Eqs. (35) and 
(36), can be used as there are two booms in one plane and four in the other plane.  See Fig. 7.  Because there is no coupling 
motion in these two planes under our previous assumptions, Eqs. (35) and (36) and can be used independently to find the 
stability in each plane.   

Fig. 7: GEC Pitching and Yawing Planes 
 
 
The value of CDbo in Eq. (27), however, needs to be modified to include the drag of those booms not in the plane being 
examined.  In the pitching plane, there are 2 booms that are non-influential "dead weight" as far as that plane is concerned 
and Eq. (37) applies.  In the yawing plane, there are 4 booms that are non-influential "dead weight", and Eq. (38) applies. 

( ) ACLbDoDboMb xCSCCC αα ++= 2   ( ) ACLbDoDboMb xCSCCC αα ++= 4                (37), (38) 

Pitching 
Plane 

(4 Booms)
Yawing Plane 

(2 Booms) 
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Note: due to the boom's symmetry there is no additional CLbα modification. 
 After taking the out-of-plane booms into account, the aerodynamic center location, xAC, was plotted vs. 

boom location, r, to determine stability in the pitch and yaw planes. (Note that because of the assumed symmetric nature of 
the spacecraft, xAC is the same for both the pitching and yawing plane.)  See Fig. 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 8: Stability Line for Different Spring Constants, 6-Booms 
 
 
 The different lines represent the border between the stable and unstable regions with respect to each plane. The solid 
lines show the separation of the stable and unstable regions for movement in pitching plane for various values of k.  The 
dashed line shows the separation of the stable and unstable regions for movement in the yawing plane.  Note that there is only 
one dashed line.  This is because the yaw stability line is independent of the spring constant value when the boom orientation 
is at 90 degrees as previously discussed.  To determine the overall stability of the spacecraft, the lower of the two curves 
needs to be chosen as the dividing line between the stable and unstable regions. 
 No matter what the spring constant is, there is always less stability in the pitching plane than the yawing plane for 
positive values of r.  For negative values of r, sometimes the yawing plane is more stable and sometimes the pitching plane is 
more stable.  It depends on the value of the spring constant and the specific negative value of r. 
 To maintain a stable spacecraft, it is important to choose values of xac and r that are in the stable region.  Note, 
however, that even if the design parameters of the spacecraft are deemed stable at the beginning of a spacecraft's life, it is 
possible that they may change over its lifetime.  During the spacecraft's mission life, the values of xAC and r could change, 
say, as fuel is consumed.   
 Using Fig. 8 as an example, if the fuel was stowed near the front of the spacecraft, as it is consumed, the center of 
gravity will shift rearward, and the values of xAC and r will become more positive.  From any arbitrary initial position in Fig. 
8, that point will move up and to the right toward the unstable region.  
 Finally, if there is any uncertainty in what the exact spring constant of the booms is, near the intersection point it 
may not be known if the spacecraft becomes unstable first in the pitching plane or the yawing plane.  If this is an important 
consideration, a designer may wish to avoid a configuration that is near this intersection point. 
 
 
CONCLUSIONS 
  
 This work has investigated several different aspects of the dynamics of flexible spacecraft during aeromaneuvers in 
the rarefied atmosphere.  Although the topics of aeromaneuvering, flexible spacecraft dynamics, and rarefied gas flow have 
separately been examined in the literature, the connection between the three had not been made before.  By making this 
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connection in this work, many important discoveries were made to better understand the behavior of flexible spacecraft 
during shallow aeromaneuvers.  The work also provides a solid basis for further studies. 
 
   
Analytic Stability Solutions 
 
 Most importantly, analytic stability solutions were developed to help a spacecraft builder design a stable spacecraft.  
The analytic solutions gave much more insight into the physics of the behavior than what the numerical solutions could 
provide.  Simple analytic solutions were found to predict the dynamic stability of the spacecraft. 
 The analytic dynamic stability solutions provide the most important tool to the spacecraft designer.  The solutions 
give precise recommendations to the designer for ensuring stable flight.  The designer can see directly how changes to a 
spacecraft parameter affect the stability.  Flexibility plays an important role in dynamic stability, but its exact role also 
depends on the orientation and positioning of the booms.  The equations also impose requirements on the spacecraft body's 
center of gravity that must be met for the particular boom properties.  The equations can also be used to produce design maps 
which are useful when tracking stability as the parameters change over the lifetime of the mission. 
 
Application to NASA Missions 
 
 Secondly, this work has direct application to the NASA GEC mission spacecraft.  This work provides a depth of 
analysis on stability that hadn't been previously accomplished for this type of atmospheric, dipping mission.  The analytic 
stability solutions developed were modified and applied to this six-boom orthogonal configuration, and several design 
suggestions resulted from this application.  With a given spacecraft body, the booms should be placed as far back on the 
spacecraft as possible for the greatest stability.  Also, making the booms more rigid will also help the stability in the yaw 
plane, but diminishing returns are seen after a certain level of stiffness.   
 Also of high importance, the analytic stability solutions provide an easy way to make design trades for the GEC 
spacecraft.  By knowing the relationship of the spacecraft parameters to stability, a designer can see if it is worthwhile to try 
and improve a specific spacecraft parameter or see if another can be improved more cheaply while still maintaining the same 
stability result. 
 
Future Work  
 
 Now that a foundation has been established to better understand the fundamental dynamics of flexible spacecraft 
during shallow aeromaneuvers, further studies can be undertaken to refine some of the details or look at new concepts: 
 1.  Future work can be done on improving the gas-surface interaction model.  Schultz, Lewis21 have initially 
examined how the stability of the spacecraft is influenced by the accuracy of the gas-surface interaction.  This work 
uncovered the need for improved modeling of the gas-surface interaction parameters in order to make better stability 
predictions.  Applying a Nocilla, Cercignani-Lampis, or DSMC rarefied gas model to the analysis could help lower the 
uncertainty in the lift and drag equations used for stability analysis. 
 2.  Further work can now be undertaken in the area of orbital analysis.  The orbital stability and spacecraft stability 
were separated in this work to concentrate on the spacecraft stability features.  Now that the spacecraft stability has been 
determined, the results can be put into the orbital stability part of the equation to understand the trade off between spacecraft 
stability and orbital stability. 
 3.  In some applications, pointing accuracy is an important consideration.  Now that the equations of motion have 
been established for this type of spacecraft, work can be done to design control algorithms to achieve pointing accuracies 
under a changing and unpredictable atmospheric environment. 
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